Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We use a high-precision radial velocity survey of FGKM stars to study the conditional occurrence of two classes of planets: close-in small planets (0.023–1 au, 2–30 M ⊕ ) and distant giant planets (0.23–10 au, 30–6000 M ⊕ ). We find that 41 − 13 + 15 % of systems with a close-in, small planet also host an outer giant, compared to 17.6 − 1.9 + 2.4 % for stars irrespective of small planet presence. This implies that small planet hosts may be enhanced in outer giant occurrences compared to all stars with 1.7 σ significance. Conversely, we estimate that 42 − 13 + 17 % of cold giant hosts also host an inner small planet, compared to 27.6 − 4.8 + 5.8 % of stars irrespective of cold giant presence. We also find that more massive and close-in giant planets are not associated with small inner planets. Specifically, our sample indicates that small planets are less likely to have outer giant companions more massive than approximately 120 M ⊕ and within 0.3–3 au, than to have less massive or more distant giant companions, with ∼2.2 σ confidence. This implies that massive gas giants within 0.3–3 au may suppress inner small planet formation. Additionally, we compare the host-star metallicity distributions for systems with only small planets and those with both small planets and cold giants. In agreement with previous studies, we find that stars in our survey that only host small planets have a metallicity distribution that is consistent with the broader solar-metallicity-median sample, while stars that host both small planets and gas giants are distinctly metal rich with ∼2.3 σ confidence.more » « less
-
Abstract We combine multiple campaigns of K2 photometry with precision radial velocity measurements from Keck-HIRES to measure the masses of three sub-Neptune-sized planets. We confirm the planetary nature of the massive sub-Neptune K2-182 b ( P b = 4.7 days, R b = 2.69 R ⊕ ) and derive refined parameters for K2-199 b and c ( P b = 3.2 days, R b = 1.73 R ⊕ and P c = 7.4 days, R c = 2.85 R ⊕ ). These planets provide valuable data points in the mass–radius plane, especially as TESS continues to reveal an increasingly diverse sample of sub-Neptunes. The moderately bright ( V = 12.0 mag) early K dwarf K2-182 (EPIC 211359660) was observed during K2 campaigns 5 and 18. We find that K2-182 b is potentially one of the densest sub-Neptunes known to date (20 ± 5 M ⊕ and 5.6 ± 1.4 g cm −3 ). The K5V dwarf K2-199 (EPIC 212779596; V = 12.3 mag), observed in K2 campaigns 6 and 17, hosts two recently confirmed planets. We refine the orbital and planetary parameters for K2-199 b and c by modeling both campaigns of K2 photometry and adding 12 Keck-HIRES measurements to the existing radial velocity data set ( N = 33). We find that K2-199 b is likely rocky, at 6.9 ± 1.8 M ⊕ and 7.2 − 2.0 + 2.1 g cm −3 , and that K2-199 c has an intermediate density at 12.4 ± 2.3 M ⊕ and 2.9 − 0.6 + 0.7 g cm −3 . We contextualize these planets on the mass–radius plane, discuss a small but intriguing population of “superdense” sub-Neptunes ( R p < 3 R ⊕ , M p >20 M ⊕ ), and consider our prospects for the planets’ atmospheric characterization.more » « less
-
We present high-speed optical observations of the nova ASASSN-17hx, taken both immediately after its discovery and close to its first peak in brightness, to search for second-minute pulsations associated with the convective eddy turnover timescale within the nova envelope. We do not detect any periodic signal with greater than 3σ significance. Through injection and recovery, we rule out periodic signals of fractional amplitude >7.08 × 10^-4 on timescales of 2 s and fractional amplitude >1.06 × 10^-3 on timescales of 10 minutes. Additional observations of novae are planned to further constrain ongoing simulations of the launch and propagation of nova winds.more » « less
An official website of the United States government

Full Text Available